Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Biol Chem ; 299(6): 104787, 2023 06.
Article in English | MEDLINE | ID: covidwho-2308970

ABSTRACT

Understanding the functional properties of severe acute respiratory syndrome coronavirus 2 nonstructural proteins is essential for defining their roles in the viral life cycle, developing improved therapeutics and diagnostics, and countering future variants. Coronavirus nonstructural protein Nsp15 is a hexameric U-specific endonuclease whose functions, substrate specificity, mechanism, and dynamics are not fully defined. Previous studies report that Nsp15 requires Mn2+ ions for optimal activity; however, the effects of divalent ions on Nsp15 reaction kinetics have not been investigated in detail. Here, we analyzed the single- and multiple-turnover kinetics for model ssRNA substrates. Our data confirm that divalent ions are dispensable for catalysis and show that Mn2+ activates Nsp15 cleavage of two different ssRNA oligonucleotide substrates but not a dinucleotide. Biphasic kinetics of ssRNA substrates demonstrates that Mn2+ stabilizes alternative enzyme states that have faster substrate cleavage on the enzyme. However, we did not detect Mn2+-induced conformational changes using CD and fluorescence spectroscopy. The pH-rate profiles in the presence and absence of Mn2+ reveal active-site ionizable groups with similar pKas of ca. 4.8 to 5.2. An Rp stereoisomer phosphorothioate modification at the scissile phosphate had minimal effect on catalysis supporting a mechanism involving an anionic transition state. However, the Sp stereoisomer is inactive because of weak binding, consistent with models that position the nonbridging phosphoryl oxygen deep in the active site. Together, these data demonstrate that Nsp15 employs a conventional acid-base catalytic mechanism passing through an anionic transition state, and that divalent ion activation is substrate dependent.


Subject(s)
Endonucleases , Ions , RNA Cleavage , SARS-CoV-2 , Catalysis , COVID-19/microbiology , Endonucleases/genetics , Endonucleases/metabolism , Kinetics , Metals/chemistry , RNA Cleavage/genetics , SARS-CoV-2/enzymology , Ions/metabolism , Enzyme Activation , Manganese/chemistry , Hydrogen-Ion Concentration , Animals , Mice , Escherichia coli/genetics
2.
Chemistry ; 29(27): e202300075, 2023 May 11.
Article in English | MEDLINE | ID: covidwho-2241149

ABSTRACT

A new method for the detection of genomic RNA combines RNA cleavage by the 10-23 DNAzyme and use of the cleavage fragments as primers to initiate rolling circle amplification (RCA). 230 different 10-23 DNAzyme variants were screened to identify those that target accessible RNA sites within the highly structured RNA transcripts of SARS-CoV-2. A total of 28 DNAzymes were identified with >20 % cleavage, 5 with >40 % cleavage and one with >60 % in 10 min. The cleavage fragments from these reactions were then screened for coupling to an RCA reaction, leading to the identification of several cleavage fragments that could efficiently initiate RCA. Using a newly developed quasi-exponential RCA method with a detection limit of 500 aM of RNA, 14 RT-PCR positive and 15 RT-PCR negative patient saliva samples were evaluated for SARS-CoV-2 genomic RNA, achieving a clinical sensitivity of 86 % and specificity of 100 % for detection of the virus in <2.5 h.


Subject(s)
Biosensing Techniques , COVID-19 , DNA, Catalytic , Humans , DNA, Catalytic/metabolism , RNA , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA Cleavage , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Genomics , Biosensing Techniques/methods
4.
Drug Discov Today ; 26(8): 2025-2035, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275263

ABSTRACT

The limitations of conventional diagnostic procedures, such as real-time PCR-based methods and serological tests, have led the scientific community to innovate alternative nucleic acid detection approaches for SARS-CoV-2 RNA, thereby addressing the dire need for increased testing. Such approaches aim to provide rapid, accurate, cost-effective, sensitive, and high-throughput detection of SARS-CoV-2 RNA, on multiple specimen types, and without specialized equipment and expertise. The CRISPR-Cas13 system functions as a sequence-specific RNA-sensing tool that has recently been harnessed to develop simplified and flexible testing formats. This review recapitulates technical advances in the most recent CRISPR-Cas13-based methods for SARS-CoV-2/COVID-19 diagnosis. The challenges and opportunities for implementing mass testing using these novel CRISPR-Cas13 platforms are critically analyzed.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , CRISPR-Cas Systems/physiology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , CRISPR-Associated Proteins , Humans , Point-of-Care Testing/trends , RNA Cleavage
5.
Emerg Microbes Infect ; 9(1): 1900-1911, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-695197

ABSTRACT

The SARS-CoV-2 spike (S) protein, the viral mediator for binding and entry into the host cell, has sparked great interest as a target for vaccine development and treatments with neutralizing antibodies. Initial data suggest that the virus has low mutation rates, but its large genome could facilitate recombination, insertions, and deletions, as has been described in other coronaviruses. Here, we deep-sequenced the complete SARS-CoV-2 S gene from 18 patients (10 with mild and 8 with severe COVID-19), and found that the virus accumulates deletions upstream and very close to the S1/S2 cleavage site (PRRAR/S), generating a frameshift with appearance of a stop codon. These deletions were found in a small percentage of the viral quasispecies (2.2%) in samples from all the mild and only half the severe COVID-19 patients. Our results suggest that the virus may generate free S1 protein released to the circulation. We suggest that natural selection has favoured a "Don't burn down the house" strategy, in which free S1 protein may compete with viral particles for the ACE2 receptor, thus reducing the severity of the infection and tissue damage without losing transmission capability.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Genome, Viral/genetics , Pneumonia, Viral/virology , Quasispecies/genetics , Respiratory Tract Infections/virology , Spike Glycoprotein, Coronavirus/genetics , Adult , Aged , COVID-19 , Computational Biology , Female , Gene Deletion , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pandemics , RNA Cleavage , SARS-CoV-2 , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL